Tuesday, 10 November 2009

Depakote Capsules



divalproex sodium

Dosage Form: capsule
FULL PRESCRIBING INFORMATION
BOXED WARNING

WARNING: LIFE THREATENING ADVERSE REACTIONS


HEPATOTOXICITY


Hepatic failure resulting in fatalities has occurred in patients receiving valproic acid and its derivatives. Children under the age of two years are at a considerably increased risk of developing fatal hepatotoxicity, especially those on multiple anticonvulsants, those with congenital metabolic disorders, those with severe seizure disorders accompanied by mental retardation, and those with organic brain disease. When Depakote Sprinkle Capsules are used in this patient group, they should be used with extreme caution and as a sole agent. The benefits of therapy should be weighed against the risks. The incidence of fatal hepatotoxicity decreases considerably in progressively older patient groups.


These incidents usually have occurred during the first six months of treatment. Serious or fatal hepatotoxicity may be preceded by non-specific symptoms such as malaise, weakness, lethargy, facial edema, anorexia, and vomiting. In patients with epilepsy, a loss of seizure control may also occur. Patients should be monitored closely for appearance of these symptoms. Liver function tests should be performed prior to therapy and at frequent intervals thereafter, especially during the first six months [See Warnings and Precautions (5.1)].


TERATOGENICITY


Valproate can produce teratogenic effects such as neural tube defects (e.g., spina bifida). Accordingly, the use of Depakote Sprinkle Capsules in women of childbearing potential requires that the benefits of its use be weighed against the risk of injury to the fetus. This is especially important when the treatment of a spontaneously reversible condition not ordinarily associated with permanent injury or risk of death (e.g., migraine) is contemplated. [See Warnings and Precautions (5.2)]


An information sheet describing the teratogenic potential of valproate is available for patients [See Patient Counseling Information (17)].


PANCREATITIS


Cases of life-threatening pancreatitis have been reported in both children and adults receiving valproate. Some of the cases have been described as hemorrhagic with a rapid progression from initial symptoms to death. Cases have been reported shortly after initial use as well as after several years of use. Patients and guardians should be warned that abdominal pain, nausea, vomiting and/or anorexia can be symptoms of pancreatitis that require prompt medical evaluation. If pancreatitis is diagnosed, valproate should ordinarily be discontinued. Alternative treatment for the underlying medical condition should be initiated as clinically indicated [see Warnings and Precautions (5.3)].




Indications and Usage for Depakote Capsules



Epilepsy


Depakote Sprinkle Capsules are indicated as monotherapy and adjunctive therapy in the treatment of adult patients and pediatric patients down to the age of 10 years with complex partial seizures that occur either in isolation or in association with other types of seizures. Depakote Sprinkle Capsules are also indicated for use as sole and adjunctive therapy in the treatment of simple and complex absence seizures, and adjunctively in patients with multiple seizure types that include absence seizures.


Simple absence is defined as very brief clouding of the sensorium or loss of consciousness accompanied by certain generalized epileptic discharges without other detectable clinical signs. Complex absence is the term used when other signs are also present. [see Warnings and Precautions (5.2), Patient Counseling Information (17.3)].



Depakote Capsules Dosage and Administration



Epilepsy


Depakote Sprinkle Capsules are administered orally. As Depakote dosage is titrated upward, concentrations of clonazepam, diazepam, ethosuximide, lamotrigine, tolbutamide, phenobarbital, carbamazepine, and/or phenytoin may be affected [see Drug Interactions (7.2)].


Complex Partial Seizures


For adults and children 10 years of age or older.


Monotherapy (Initial Therapy)


Depakote has not been systematically studied as initial therapy. Patients should initiate therapy at 10 to 15 mg/kg/day. The dosage should be increased by 5 to 10 mg/kg/week to achieve optimal clinical response. Ordinarily, optimal clinical response is achieved at daily doses below 60 mg/kg/day. If satisfactory clinical response has not been achieved, plasma levels should be measured to determine whether or not they are in the usually accepted therapeutic range (50 to 100 mcg/mL). No recommendation regarding the safety of valproate for use at doses above 60 mg/kg/day can be made.


The probability of thrombocytopenia increases significantly at total trough valproate plasma concentrations above 110 mcg/mL in females and 135 mcg/mL in males. The benefit of improved seizure control with higher doses should be weighed against the possibility of a greater incidence of adverse reactions.


Conversion to Monotherapy


Patients should initiate therapy at 10 to 15 mg/kg/day. The dosage should be increased by 5 to 10 mg/kg/week to achieve optimal clinical response. Ordinarily, optimal clinical response is achieved at daily doses below 60 mg/kg/day. If satisfactory clinical response has not been achieved, plasma levels should be measured to determine whether or not they are in the usually accepted therapeutic range (50 - 100 mcg/mL). No recommendation regarding the safety of valproate for use at doses above 60 mg/kg/day can be made.


Concomitant antiepilepsy drug (AED) dosage can ordinarily be reduced by approximately 25% every 2 weeks. This reduction may be started at initiation of Depakote therapy, or delayed by 1 to 2 weeks if there is a concern that seizures are likely to occur with a reduction. The speed and duration of withdrawal of the concomitant AED can be highly variable, and patients should be monitored closely during this period for increased seizure frequency.


Adjunctive Therapy


Depakote may be added to the patient's regimen at a dosage of 10 to 15 mg/kg/day. The dosage may be increased by 5 to 10 mg/kg/week to achieve optimal clinical response. Ordinarily, optimal clinical response is achieved at daily doses below 60 mg/kg/day. If satisfactory clinical response has not been achieved, plasma levels should be measured to determine whether or not they are in the usually accepted therapeutic range (50 to 100 mcg/mL). No recommendation regarding the safety of valproate for use at doses above 60 mg/kg/day can be made. If the total daily dose exceeds 250 mg, it should be given in divided doses.


In a study of adjunctive therapy for complex partial seizures in which patients were receiving either carbamazepine or phenytoin in addition to Depakote, no adjustment of carbamazepine or phenytoin dosage was needed [see Clinical studies (14)]. However, since valproate may interact with these or other concurrently administered AEDs as well as other drugs, periodic plasma concentration determinations of concomitant AEDs are recommended during the early course of therapy [see Drug Interactions (7)].


Simple and Complex Absence Seizures


The recommended initial dose is 15 mg/kg/day, increasing at one week intervals by 5 to 10 mg/kg/day until seizures are controlled or side effects preclude further increases. The maximum recommended dosage is 60 mg/kg/day. If the total daily dose exceeds 250 mg, it should be given in divided doses.


A good correlation has not been established between daily dose, serum concentrations, and therapeutic effect. However, therapeutic valproate serum concentrations for most patients with absence seizures are considered to range from 50 to 100 mcg/mL. Some patients may be controlled with lower or higher serum concentrations [see Clinical Pharmacology (12.2)].


As Depakote dosage is titrated upward, blood concentrations of phenobarbital and/or phenytoin may be affected [see Drug Interactions (7.2)].


Antiepilepsy drugs should not be abruptly discontinued in patients in whom the drug is administered to prevent major seizures because of the strong possibility of precipitating status epilepticus with attendant hypoxia and threat to life.


In epileptic patients previously receiving Depakene (valproic acid) therapy, Depakote Sprinkle Capsules should be initiated at the same daily dose and dosing schedule. After the patient is stabilized on Depakote Sprinkle Capsules, a dosing schedule of two or three times a day may be elected in selected patients.



General Dosing Advice


Dosing in Elderly Patients


Due to a decrease in unbound clearance of valproate and possibly a greater sensitivity to somnolence in the elderly, the starting dose should be reduced in these patients. Dosage should be increased more slowly and with regular monitoring for fluid and nutritional intake, dehydration, somnolence, and other adverse reactions. Dose reductions or discontinuation of valproate should be considered in patients with decreased food or fluid intake and in patients with excessive somnolence. The ultimate therapeutic dose should be achieved on the basis of both tolerability and clinical response [see Warnings and Precautions (5.12), Use in Specific Populations (8.5) and Clinical Pharmacology (12.3)].


Dose-Related Adverse reactions


The frequency of adverse effects (particularly elevated liver enzymes and thrombocytopenia) may be dose-related. The probability of thrombocytopenia appears to increase significantly at total valproate concentrations of ≥ 110 mcg/mL (females) or ≥ 135 mcg/mL (males) [see Warnings and Precautions (5.6)]. The benefit of improved therapeutic effect with higher doses should be weighed against the possibility of a greater incidence of adverse reactions.


G.I. Irritation


Patients who experience G.I. irritation may benefit from administration of the drug with food or by slowly building up the dose from an initial low level.


Administration of Sprinkle Capsules


Depakote Sprinkle Capsules may be swallowed whole or may be administered by carefully opening the capsule and sprinkling the entire contents on a small amount (teaspoonful) of soft food such as applesauce or pudding. The drug/food mixture should be swallowed immediately (avoid chewing) and not stored for future use. Each capsule is oversized to allow ease of opening.



Dosage Forms and Strengths


Depakote Sprinkle Capsules are for oral administration. Depakote Sprinkle Capsules contain specially coated particles of divalproex sodium equivalent to 125 mg of valproic acid in a hard gelatin capsule.



Contraindications



  • Depakote Sprinkle Capsules should not be administered to patients with hepatic disease or significant hepatic dysfunction [see Warnings and Precautions (5.1)].




  • Depakote Sprinkle Capsules is contraindicated in patients with known hypersensitivity to the drug [see Warnings and Precautions (5.10)].




  • Depakote Sprinkle Capsules is contraindicated in patients with known urea cycle disorders [see Warnings and Precautions (5.4)].




Warnings and Precautions



Hepatotoxicity


Hepatic failure resulting in fatalities has occurred in patients receiving valproic acid. These incidents usually have occurred during the first six months of treatment. Serious or fatal hepatotoxicity may be preceded by non-specific symptoms such as malaise, weakness, lethargy, facial edema, anorexia, and vomiting. In patients with epilepsy, a loss of seizure control may also occur. Patients should be monitored closely for appearance of these symptoms. Liver function tests should be performed prior to therapy and at frequent intervals thereafter, especially during the first six months. However, healthcare providers should not rely totally on serum biochemistry since these tests may not be abnormal in all instances, but should also consider the results of careful interim medical history and physical examination.


Caution should be observed when administering Depakote products to patients with a prior history of hepatic disease. Patients on multiple anticonvulsants, children, those with congenital metabolic disorders, those with severe seizure disorders accompanied by mental retardation, and those with organic brain disease may be at particular risk. Experience has indicated that children under the age of two years are at a considerably increased risk of developing fatal hepatotoxicity, especially those with the aforementioned conditions. When Depakote is used in this patient group, it should be used with extreme caution and as a sole agent. The benefits of therapy should be weighed against the risks. Above this age group, experience in epilepsy has indicated that the incidence of fatal hepatotoxicity decreases considerably in progressively older patient groups.


The drug should be discontinued immediately in the presence of significant hepatic dysfunction, suspected or apparent. In some cases, hepatic dysfunction has progressed in spite of discontinuation of drug [see Boxed Warning and Contraindications (4)].



Teratogenicity/Usage in Pregnancy


Use of Depakote during pregnancy can cause congenital malformations including neural tube defects. If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to the fetus. Depakote should be considered for women of childbearing potential only after the risks have been thoroughly discussed with the patient and weighed against the potential benefits of treatment.


Data suggest that there is an increased incidence of congenital malformations associated with the use of valproate by women with seizure disorders during pregnancy when compared to the incidence in women with seizure disorders who do not use antiepileptic drugs during pregnancy, the incidence in women with seizure disorders who use other antiepileptic drugs, and the background incidence for the general population.


There are multiple reports in the clinical literature that indicate the use of antiepileptic drugs during pregnancy results in an increased incidence of congenital malformations in offspring. Antiepileptic drugs, including valproate, should be administered to women of childbearing potential only if they are clearly shown to be essential in the management of their medical condition.


 There have been reports of developmental delay, autism and/or autism spectrum disorder in the offspring of women exposed to valproate during pregnancy.


Antiepileptic drugs should not be discontinued abruptly in patients in whom the drug is administered to prevent major seizures because of the strong possibility of precipitating status epilepticus with attendant hypoxia and threat to life. In individual cases where the severity and frequency of the seizure disorder are such that the removal of medication does not pose a serious threat to the patient, discontinuation of the drug may be considered prior to and during pregnancy, although it cannot be said with any confidence that even minor seizures do not pose some hazard to the developing embryo or fetus [see Boxed Warning and Use in Specific Populations (8.1)].



Pancreatitis


Cases of life-threatening pancreatitis have been reported in both children and adults receiving valproate. Some of the cases have been described as hemorrhagic with rapid progression from initial symptoms to death. Some cases have occurred shortly after initial use as well as after several years of use. The rate based upon the reported cases exceeds that expected in the general population and there have been cases in which pancreatitis recurred after rechallenge with valproate. In clinical trials, there were 2 cases of pancreatitis without alternative etiology in 2416 patients, representing 1044 patient-years experience. Patients and guardians should be warned that abdominal pain, nausea, vomiting, and/or anorexia can be symptoms of pancreatitis that require prompt medical evaluation. If pancreatitis is diagnosed, Depakote should ordinarily be discontinued. Alternative treatment for the underlying medical condition should be initiated as clinically indicated [see Boxed Warning].



Urea Cycle Disorders (UCD)


Depakote is contraindicated in patients with known urea cycle disorders (UCD). Hyperammonemic encephalopathy, sometimes fatal, has been reported following initiation of valproate therapy in patients with urea cycle disorders, a group of uncommon genetic abnormalities, particularly ornithine transcarbamylase deficiency. Prior to the initiation of Depakote therapy, evaluation for UCD should be considered in the following patients: 1) those with a history of unexplained encephalopathy or coma, encephalopathy associated with a protein load, pregnancy-related or postpartum encephalopathy, unexplained mental retardation, or history of elevated plasma ammonia or glutamine; 2) those with cyclical vomiting and lethargy, episodic extreme irritability, ataxia, low BUN, or protein avoidance; 3) those with a family history of UCD or a family history of unexplained infant deaths (particularly males); 4) those with other signs or symptoms of UCD. Patients who develop symptoms of unexplained hyperammonemic encephalopathy while receiving valproate therapy should receive prompt treatment (including discontinuation of valproate therapy) and be evaluated for underlying urea cycle disorders [see Contraindications (4) and Warnings and Precautions (5.7)].



Suicidal Behavior and Ideation


 Antiepileptic drugs (AEDs), including Depakote increase the risk of suicidal thoughts or behavior in patients taking these drugs for any indication. Patients treated with any AED for any indication should be monitored for the emergence or worsening of depression, suicidal thoughts or behavior, and/or any unusual changes in mood or behavior.


 Pooled analyses of 199 placebo-controlled clinical trials (mono- and adjunctive therapy) of 11 different AEDs showed that patients randomized to one of the AEDs had approximately twice the risk (adjusted Relative Risk 1.8, 95% CI:1.2, 2.7) of suicidal thinking or behavior compared to patients randomized to placebo. In these trials, which had a median treatment duration of 12 weeks, the estimated incidence rate of suicidal behavior or ideation among 27,863 AED-treated patients was 0.43%, compared to 0.24% among 16,029 placebo-treated patients, representing an increase of approximately one case of suicidal thinking or behavior for every 530 patients treated. There were four suicides in drug-treated patients in the trials and none in placebo-treated patients, but the number is too small to allow any conclusion about drug effect on suicide.


 The increased risk of suicidal thoughts or behavior with AEDs was observed as early as one week after starting drug treatment with AEDs and persisted for the duration of treatment assessed. Because most trials included in the analysis did not extend beyond 24 weeks, the risk of suicidal thoughts or behavior beyond 24 weeks could not be assessed.


 The risk of suicidal thoughts or behavior was generally consistent among drugs in the data analyzed. The finding of increased risk with AEDs of varying mechanisms of action and across a range of indications suggests that the risk applies to all AEDs used for any indication. The risk did not vary substantially by age (5-100 years) in the clinical trials analyzed.


 Table 1 shows absolute and relative risk by indication for all evaluated AEDs.





























Table 1. Risk by indication for antiepileptic drugs in the pooled analysis
IndicationPlacebo Patients with Events Per 1000 PatientsDrug Patients with Events Per 1000 PatientsRelative Risk: Incidence of Events in Drug Patients/Incidence in Placebo PatientsRisk Difference: Additional Drug Patients with Events Per 1000 Patients
Epilepsy1.03.43.52.4
Psychiatric5.78.51.52.9
Other1.01.81.90.9
Total2.44.31.81.9

 The relative risk for suicidal thoughts or behavior was higher in clinical trials for epilepsy than in clinical trials for psychiatric or other conditions, but the absolute risk differences were similar for the epilepsy and psychiatric indications.


 Anyone considering prescribing Depakote or any other AED must balance the risk of suicidal thoughts or behavior with the risk of untreated illness. Epilepsy and many other illnesses for which AEDs are prescribed are themselves associated with morbidity and mortality and an increased risk of suicidal thoughts and behavior. Should suicidal thoughts and behavior emerge during treatment, the prescriber needs to consider whether the emergence of these symptoms in any given patient may be related to the illness being treated.


 Patients, their caregivers, and families should be informed that AEDs increase the risk of suicidal thoughts and behavior and should be advised of the need to be alert for the emergence or worsening of the signs and symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal thoughts, behavior, or thoughts about self-harm. Behaviors of concern should be reported immediately to healthcare providers.



Thrombocytopenia


The frequency of adverse effects (particularly elevated liver enzymes and thrombocytopenia) may be dose-related. In a clinical trial of Depakote as monotherapy in patients with epilepsy, 34/126 patients (27%) receiving approximately 50 mg/kg/day on average, had at least one value of platelets ≤ 75 x 109/L. Approximately half of these patients had treatment discontinued, with return of platelet counts to normal. In the remaining patients, platelet counts normalized with continued treatment. In this study, the probability of thrombocytopenia appeared to increase significantly at total valproate concentrations of ≥ 110 mcg/mL (females) or ≥ 135 mcg/mL (males). The therapeutic benefit which may accompany the higher doses should therefore be weighed against the possibility of a greater incidence of adverse effects.


Because of reports of thrombocytopenia, inhibition of the secondary phase of platelet aggregation, and abnormal coagulation parameters, (e.g., low fibrinogen), platelet counts and coagulation tests are recommended before initiating therapy and at periodic intervals. It is recommended that patients receiving Depakote be monitored for platelet count and coagulation parameters prior to planned surgery. Evidence of hemorrhage, bruising, or a disorder of hemostasis/coagulation is an indication for reduction of the dosage or withdrawal of therapy.



Hyperammonemia


Hyperammonemia has been reported in association with valproate therapy and may be present despite normal liver function tests. In patients who develop unexplained lethargy and vomiting or changes in mental status, hyperammonemic encephalopathy should be considered and an ammonia level should be measured [see Contraindications (4) and Warnings and Precautions (5.4)].


Hyperammonemia should also be considered in patients who present with hypothermia [see Warnings and Precautions (5.9)]. If ammonia is increased, valproate therapy should be discontinued. Appropriate interventions for treatment of hyperammonemia should be initiated, and such patients should undergo investigation for underlying urea cycle disorders [see Contraindications (4) and Warnings and Precautions (5.4, 5.8)]. Asymptomatic elevations of ammonia are more common and when present, require close monitoring of plasma ammonia levels. If the elevation persists, discontinuation of valproate therapy should be considered.



Hyperammonemia and Encephalopathy associated with Concomitant Topiramate Use


Concomitant administration of topiramate and valproic acid has been associated with hyperammonemia with or without encephalopathy in patients who have tolerated either drug alone. Clinical symptoms of hyperammonemic encephalopathy often include acute alterations in level of consciousness and/or cognitive function with lethargy or vomiting. Hypothermia can also be a manifestation of hyperammonemia [see Warnings and Precautions (5.9)]. In most cases, symptoms and signs abated with discontinuation of either drug. This adverse event is not due to a pharmacokinetic interaction. It is not known if topiramate monotherapy is associated with hyperammonemia. Patients with inborn errors of metabolism or reduced hepatic mitochondrial activity may be at an increased risk for hyperammonemia with or without encephalopathy. Although not studied, an interaction of topiramate and valproic acid may exacerbate existing defects or unmask deficiencies in susceptible persons. In patients who develop unexplained lethargy, vomiting, or changes in mental status, hyperammonemic encephalopathy should be considered and an ammonia level should be measured [see Contraindications (4) and Warnings and Precautions (5.4, 5.7)].



Hypothermia


Hypothermia, defined as an unintentional drop in body core temperature to < 35°C (95°F), has been reported in association with valproate therapy both in conjunction with and in the absence of hyperammonemia. This adverse reaction can also occur in patients using concomitant topiramate with valproate after starting topiramate treatment or after increasing the daily dose of topiramate [see Drug Interactions (7.3)]. Consideration should be given to stopping valproate in patients who develop hypothermia, which may be manifested by a variety of clinical abnormalities including lethargy, confusion, coma, and significant alterations in other major organ systems such as the cardiovascular and respiratory systems. Clinical management and assessment should include examination of blood ammonia levels.



Multi-Organ Hypersensitivity Reactions


Multi-organ hypersensitivity reactions have been rarely reported in close temporal association to the initiation of valproate therapy in adult and pediatric patients (median time to detection 21 days: range 1 to 40 days). Although there have been a limited number of reports, many of these cases resulted in hospitalization and at least one death has been reported. Signs and symptoms of this disorder were diverse; however, patients typically, although not exclusively, presented with fever and rash associated with other organ system involvement. Other associated manifestations may include lymphadenopathy, hepatitis, liver function test abnormalities, hematological abnormalities (e.g., eosinophilia, thrombocytopenia, neutropenia), pruritus, nephritis, oliguria, hepato-renal syndrome, arthralgia, and asthenia. Because the disorder is variable in its expression, other organ system symptoms and signs, not noted here, may occur. If this reaction is suspected, valproate should be discontinued and an alternative treatment started. Although the existence of cross sensitivity with other drugs that produce this syndrome is unclear, the experience amongst drugs associated with multi-organ hypersensitivity would indicate this to be a possibility.



Interaction with Carbapenem Antibiotics


Carbapenem antibiotics (ertapenem, imipenem, meropenem) may reduce serum valproic acid concentrations to subtherapeutic levels, resulting in loss of seizure control. Serum valproic acid concentrations should be monitored frequently after initiating carbapenem therapy. Alternative antibacterial or anticonvulsant therapy should be considered if serum valproic acid concentrations drop significantly or seizure control deteriorates [see Drug Interactions (7.1)].



Somnolence in the Elderly


In a double-blind, multicenter trial of valproate in elderly patients with dementia (mean age = 83 years), doses were increased by 125 mg/day to a target dose of 20 mg/kg/day. A significantly higher proportion of valproate patients had somnolence compared to placebo, and although not statistically significant, there was a higher proportion of patients with dehydration. Discontinuations for somnolence were also significantly higher than with placebo. In some patients with somnolence (approximately one-half), there was associated reduced nutritional intake and weight loss. There was a trend for the patients who experienced these events to have a lower baseline albumin concentration, lower valproate clearance, and a higher BUN. In elderly patients, dosage should be increased more slowly and with regular monitoring for fluid and nutritional intake, dehydration, somnolence, and other adverse reactions. Dose reductions or discontinuation of valproate should be considered in patients with decreased food or fluid intake and in patients with excessive somnolence [see Dosage and Administration (2.4)].



Monitoring: Drug Plasma Concentration


Since Depakote may interact with concurrently administered drugs which are capable of enzyme induction, periodic plasma concentration determinations of valproate and concomitant drugs are recommended during the early course of therapy [see Drug Interactions (7)].



Effect on Ketone and Thyroid function Tests


Valproate is partially eliminated in the urine as a keto-metabolite which may lead to a false interpretation of the urine ketone test.


There have been reports of altered thyroid function tests associated with valproate. The clinical significance of these is unknown [see Adverse Events (6.2)].



Effect on HIV and CMV Viruses Replication


There are in vitro studies that suggest valproate stimulates the replication of the HIV and CMV viruses under certain experimental conditions. The clinical consequence, if any, is not known. Additionally, the relevance of these in vitro findings is uncertain for patients receiving maximally suppressive antiretroviral therapy. Nevertheless, these data should be borne in mind when interpreting the results from regular monitoring of the viral load in HIV infected patients receiving valproate or when following CMV infected patients clinically.



Adverse Reactions


The following adverse reactions are discussed in greater detail in other sections of the labeling:


Hepatic failure (5.1)


Teratogenicity (5.2)


Pancreatitis (5.3)


Hyperammonemic encephalopathy (5.4, 5.7)


Somnolence in the elderly (5.12)


Thrombocytopenia (5.6)


Multi-organ hypersensitivity reactions (5.10)


Because clinical studies are conducted under widely varying conditions, adverse reaction rates observed in the clinical studies of a drug cannot be directly compared to rates in the clinical studies of another drug and may not reflect the rates observed in practice.



Epilepsy


Based on a placebo-controlled trial of adjunctive therapy for treatment of partial seizures, Depakote was generally well tolerated with most adverse reactions rated as mild to moderate in severity. Intolerance was the primary reason for discontinuation in the Depakote -treated patients (6%), compared to 1% of placebo-treated patients.


In a long term (12-month) safety study in pediatric patients (N=169) between the ages of 3 and 10 years old, no clinically meaningful differences in the adverse event profile were observed when compared to adults.


Table 2 lists treatment-emergent adverse reactions which were reported by ≥ 5% of Depakote -treated patients and for which the incidence was greater than in the placebo group, in the placebo-controlled trial of adjunctive therapy for treatment of complex partial seizures. Since patients were also treated with other antiepilepsy drugs, it is not possible, in most cases, to determine whether the following adverse reactions can be ascribed to Depakote alone, or the combination of Depakote and other antiepilepsy drugs.


























































































Table 2. Adverse reactions Reported by ≥ 5% of Patients Treated with Depakote During Placebo-Controlled Trial of Adjunctive Therapy for Complex Partial Seizures
Body System/EventDepakote (%)

(n = 77)
Placebo (%)

(n = 70)
Body as a Whole
     Headache3121
     Asthenia277
     Fever64
Gastrointestinal System
     Nausea4814
     Vomiting277
     Abdominal Pain236
     Diarrhea136
     Anorexia120
     Dyspepsia84
     Constipation51
Nervous System
     Somnolence2711
     Tremor256
     Dizziness2513
     Diplopia169
     Amblyopia/Blurred Vision129
     Ataxia81
     Nystagmus81
     Emotional Lability64
     Thinking Abnormal60
     Amnesia51
Respiratory System
     Flu Syndrome129
     Infection126
     Bronchitis51
     Rhinitis54
Other
     Alopecia61
     Weight Loss60

Table 3 lists treatment-emergent adverse reactions which were reported by ≥ 5% of patients in the high dose Depakote group, and for which the incidence was greater than in the low dose group, in a controlled trial of Depakote monotherapy treatment of complex partial seizures. Since patients were being titrated off another antiepilepsy drug during the first portion of the trial, it is not possible, in many cases, to determine whether the following adverse reactions can be ascribed to Depakote alone, or the combination of Depakote and other antiepilepsy drugs.



























































































Table 3. Adverse reactions Reported by ≥ 5% of Patients in the High Dose Group in the Controlled Trial of Depakote Monotherapy for Complex Partial Seizuresa
Body System/EventHigh Dose (%)

(n = 131)
Low Dose (%)

(n = 134)

a. Headache was the only adverse event that occurred in ≥ 5% of patients in the high dose group and at an equal or greater incidence in the low dose group.


Body as a Whole
     Asthenia2110
Digestive System
     Nausea3426
     Diarrhea2319
     Vomiting2315
     Abdominal Pain129
     Anorexia114
     Dyspepsia1110
Hemic/Lymphatic System
     Thrombocytopenia241
     Ecchymosis54
Metabolic/Nutritional
     Weight Gain94
     Peripheral Edema83
Nervous System
     Tremor5719
     Somnolence3018
     Dizziness1813
     Insomnia159
     Nervousness117
     Amnesia74
     Nystagmus71
     Depression54
Respiratory System
     Infection2013
     Pharyngitis82
     Dyspnea51
Skin and Appendages
     Alopecia2413
Special Senses
     Amblyopia/Blurred Vision84
     Tinnitus71

The following additional adverse reactions were reported by greater than 1% but less than 5% of the 358 patients treated with Depakote in the controlled trials of complex partial seizures:


Body as a Whole: Back pain, chest pain, malaise.


Cardiovascular System: Tachycardia, hypertension, palpitation.


Digestive System: Increased appetite, flatulence, hematemesis, eructation, pancreatitis, periodontal abscess.


Hemic and Lymphatic System: Petechia.


Metabolic and Nutritional Disorders: SGOT increased, SGPT increased.


Musculoskeletal System: Myalgia, twitching, arthralgia, leg cramps, myasthenia.


Nervous System: Anxiety, confusion, abnormal gait, paresthesia, hypertonia, incoordination, abnormal dreams, personality disorder.


Respiratory System: Sinusitis, cough increased, pneumonia, epistaxis.


Skin and Appendages: Rash, pruritus, dry skin.


Special Senses: Taste perversion, abnormal vision, deafness, otitis media.


Urogenital System: Urinary incontinence, vaginitis, dysmenorrhea, amenorrhea, urinary frequency.



Other Patient Populations


Adverse reactions that have been reported with all dosage forms of valproate from epilepsy trials, spontaneous reports, and other sources are listed below by body system.


Gastrointestinal


The most commonly reported side effects at the initiation of therapy are nausea, vomiting, and indigestion. These effects are usually transient and rarely require discontinuation of therapy. Diarrhea, abdominal cramps, and constipation have been reported. Both anorexia with some weight loss and increased appetite with weight gain have also been reported. The administration of delayed-release divalproex sodium may result in reduction of gastrointestinal side effects in some patients.


CNS Effects


Sedative effects have occurred in patients receiving valproate alone but occur most often in patients receiving combination therapy. Sedation usually abates upon reduction of other antiepileptic medication. Tremor (may be dose-related), hallucinations, ataxia, headache, nystagmus, diplopia, asterixis, "spots before eyes", dysarthria, dizziness, confusion, hypesthesia, vertigo, incoordination, and parkinsonism have been reported with the use of valproate. Rare cases of coma have occurred in patients receiving valproate alone or in conjunction with phenobarbital. In rare instances encephalopathy with or without fever has developed shortly after the introduction of valproate monotherapy without evidence of hepatic dysfunction or inappropriately high plasma valproate levels. Although recovery has been described following drug withdrawal, there have been fatalities in patients with hyperammonemic encephalopathy, particularly in patients with underlying urea cycle disorders [see Warnings and Precautions (5.4)].


Several reports have noted reversible cerebral atrophy and dementia in association with valproate therapy.


Dermatologic


Transient hair loss, skin rash, photosensitivity, generalized pruritus, erythema multiforme, and Stevens-Johnson syndrome. Rare cases of toxic epidermal necrolysis have been reported including a fatal case in a 6 month old infant taking valproate and several other concomitant medications. An additional case of toxic epidermal necrosis resulting in death was reported in a 35 year old patient with AIDS taking several concomitant medications and with a history of multiple cutaneous drug reactions. Serious skin reactions have been reported with concomitant administration of lamotrigine and valproate [see Drug Interactions (7.2)].


Psychiatric


Emotional upset, depression, psychosis, aggression, hyperactivity, hostility, and behavioral deterioration.


Musculoskeletal


Weakness.


Hematologic


Thrombocytopenia and inhibition of the secondary phase of platelet aggregation may be reflected in altered bleeding time, petechiae, bruising, hematoma formation, epistaxis, and frank hemorrhage [see Warnings and Precautions (5.6)]. Relative lymphocytosis, macrocytosis, hypofibrinogenemia, leukopenia, eosinophilia, anemia including macrocytic with or without folate deficiency, bone marrow suppression, pancytopenia, aplastic anemia, agranulocytosis, and acute intermittent porphyria.


Hepatic


Minor elevations of transaminases (e.g., SGOT and SGPT) and LDH are frequent and appear to be dose-related. Occasionally, laboratory test results include increases in serum bilirubin and abnormal changes in other liver function tests. These results may reflect potentially serious hepatotoxicity [see Warnings and Precautions (5.1)].


Endocrine


Irregular menses, secondary amenorrhea, breast enlargement, galactorrhea, and parotid gland swelling. Abnormal thyroid function tests [see Warnings and Precautions (5.14)].


There have been rare spontaneous reports of polycystic ovary disease. A cause and effect relationship has not been established.


Pancreatic: Acute pancreatitis including fatalities [see Warnings and Precautions (5.3)].


Metabolic: Hyperammonemia [see Warnings and Precautions (5.7 and 5.8)], hyponatremia, and inappropriate ADH secretion. There have been rare reports of Fanconi's syndrome occurring chiefly in children.


Decreased carnitine concentrations have been reported although the clinical relevance is undetermined.


Hyperglycinemia has occurred and was associated with a fatal outcome in a patient with preexistent nonketotic hyperglycinemia.


Genitourinary: Enuresis and urinary tract infection.


Special Senses: Hearing loss, either reversible or irreversible, has been reported; however, a cause and effect relationship has not been established. Ear pain has also been reported.


Other: Allergic reaction, anaphylaxis, edema of the extremities, lupus erythematosus, bone pain, cough increased, pneumonia, otitis media, bradycardia, cutaneous vasculitis, fever, and hypothermia [see Warnings and Precautions (5.9)].



Drug Interactions



Effects of Co-Administered Drugs on Valproate Clearance


Drugs that affect the level of expression of hepatic enzymes, particularly those that elevate levels of glucuronosyltransferases, may increase the clearance of valproate. For example, phenytoin, carbamazepine, and phenobarbital (or primidone) can d

No comments:

Post a Comment